I - PRODUCT IDENTIFICATION

MAGNESIUM ALLOYS AZ31B, AZ61B, AZ80, AZ91C, AZ92, WE43, ZE41A and ZK60
Form: billets, slabs, plate, sheet, bar, wire, forgings and castings

II – INGREDIENTS/IDENTITY INFORMATION

<table>
<thead>
<tr>
<th>CAS#</th>
<th>Component</th>
<th>SD</th>
<th>ZK60A</th>
<th>WE43</th>
<th>AZ80</th>
<th>AZ31B</th>
<th>AZ61A</th>
<th>AZ91C</th>
<th>AZ91E</th>
<th>AZ92</th>
<th>ZE41A</th>
</tr>
</thead>
<tbody>
<tr>
<td>7440-67-7</td>
<td>Zirconium</td>
<td>1.0-3.0</td>
<td>0.45 Min</td>
<td>0.4-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-66-6</td>
<td>Zinc</td>
<td>8.0-18</td>
<td>4.8-6.2</td>
<td>0.2 Max</td>
<td>0.2-0.8</td>
<td>0.7-1.3</td>
<td>0.40-1.5</td>
<td>0.4-1.0</td>
<td>0.4-1.0</td>
<td>1.6-2.4</td>
<td>3.5-5.0</td>
</tr>
<tr>
<td>7429-90-5</td>
<td>Aluminum</td>
<td>1.0-2.0</td>
<td></td>
<td></td>
<td>7.8-9.2</td>
<td>2.5-3.5</td>
<td>5.8-7.2</td>
<td>8.1-9.3</td>
<td>8.1-9.3</td>
<td>8.3-9.7</td>
<td></td>
</tr>
<tr>
<td>7440-21-3</td>
<td>Silicon</td>
<td></td>
<td>0.1 Max</td>
<td>0.05 Max</td>
<td>0.05 Max</td>
<td>0.3 Max</td>
<td>0.3 Max</td>
<td>0.3 Max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7439-96-5</td>
<td>Manganese</td>
<td>3.0-5.0</td>
<td>0.03 Max</td>
<td>0.12-0.5</td>
<td>0.2 Min</td>
<td>0.15 Min</td>
<td>0.13 Min</td>
<td>0.17-0.35</td>
<td>0.1-35</td>
<td>0.15 Max</td>
<td></td>
</tr>
<tr>
<td>7440-00-8</td>
<td>Neodymium</td>
<td>2.0-2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-65-5</td>
<td>Yttrium</td>
<td>3.7-4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.75-1.75</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>Copper</td>
<td>0.02 Max</td>
<td>0.05 Max</td>
<td>0.05 Max</td>
<td>0.1 Max</td>
<td>0.03 Max</td>
<td>0.1 Max</td>
<td>0.1 Max</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Component Information - Additional compounds, which may be formed during processing, are listed in Section 8. Exact alloy compositions are listed in Section 15.

III - Hazards Identification

Emergency Overview
Solid, Silvery-white, Odorless, large pieces are difficult to ignite but when heated to a temperature near the melting point (1200°C), can ignite and burn with intense heat and brilliant white flame. This sheets, chips, dust and fines are easily ignited.

Explosion/fire hazards may be present when (See Sections 5, 7 and 10 for additional information):
- Dust or fines are dispersed in the air.
- Molten metal in contact with water/moisture.

Dust and fume from processing can cause irritation of eyes, skin and upper respiratory tract, and metal fume fever. Direct viewing of magnesium fires may result in eye injury.

Potential Health Effects (If dusts or fumes are generated by processing)

Eyes - Can cause irritation.
Skin - Can cause irritation.
Inhalation - Can cause irritation of upper respiratory tract, metal fume fever and other health effects listed below. Cancer and reproductive hazard.

Health Effects of Ingredients
Manganese dust or fumes Chronic overexposures: Can cause central nervous system damage, secondary Parkinson’s disease, inflammation of the lung tissue, scarring of the lungs (pulmonary fibrosis) and reproductive harm in males.

Silicon inert dusts Chronic overexposures: Can cause chronic bronchitis and narrowing of the airways. Studies with experimental animals by injection have found lesions on the lungs.
Zirconium inert dusts Chronic overexposures: Can cause irritating to skin, eyes and respiratory tract. Inhalation hazard if dehydrated to a fine dust or fume.

Aluminum dust, fines and fumes Low health risk by inhalation. ACGIH: Listed as nuisance dust (milling, cutting, grinding).

Health Effects of Additional Compounds Which May Be Formed During Processing

Magnesium oxide fumes Can cause irritation of eyes and respiratory tract. Acute overexposures: Can cause nausea, fever, chills, shortness of breath and malaise (metal fume fever).

Neodymium is considered a rare earth metal. These metals are moderately to highly toxic. The symptoms of toxicity of the rare earth elements include writhing, ataxia, labored respiration, walking on the toes with arched back and sedation. The rare earth elements exhibit low toxicity by ingestion exposure. The production of skin and lung granulomas after exposure requires extensive protection to prevent such exposure.

Inhalation: May cause irritation to the respiratory tract and mucous membranes. Dusts may cause asthma attacks and lung damage such as lung granulomas. Large doses may cause immediate defecation, writhing, loss of muscle coordination, labored respiration, sedation, hypotension and cardiovascular failure. Prolonged or repeated inhalation may cause writhing, loss of muscle coordination, labored respiration, sedation, hypotension and cardiovascular failure.

Ingestion: Low toxicity by ingestion due to poor absorption. May cause gastrointestinal irritation.

Skin: May cause irritation, rashes, skin granulomas.

Eyes: May cause irritation.

Ingestion: May affect the coagulation rate of the blood.

Skin: May cause dermatitis, sensitivity to heat, itching and skin lesions.

Eyes: No chronic health effects recorded.

To the best of our knowledge the chemical, physical and toxicological properties of yttrium have not been thoroughly investigated and reported.

Yttrium is similar to the lanthanons and may have an anticoagulant effect on blood. Exposure to lanthanons may also lead to sensitivity to heat, itching, increased awareness of odor and taste, and liver damage.

Inhalation: May cause irritation to the respiratory tract and mucous membrane. Dusts may cause asthma attacks and lung damage such as lung granulomas. Prolonged or repeated inhalation may cause writhing, loss of muscle coordination, labored respiration, sedation, hypotension, fibrosis and cardiovascular collapse.

Ingestion: May cause gastrointestinal irritation. May affect the coagulation rate of the blood.

Skin: May cause irritation. No chronic effects recorded.

Eyes: May cause irritation. No chronic effects recorded.

Zinc oxide fumes Can cause irritation of upper respiratory tract. Acute overexposures: Can cause nausea, fever, chills, shortness of breath and malaise (metal fume fever). Zinc oxide dust Expected to be a low health risk by inhalation.

Manganese oxide fumes Can cause irritation of respiratory tract. Acute overexposures: Can cause nausea, fever, chills, shortness of breath and malaise (metal fume fever).

Silica, amorphous Acute overexposures: Can cause dryness of eyes, nose and upper respiratory tract.

Aluminia Low health risk by inhalation. ACGIH: Listed as nuisance dust.

*IARC Classifications

Group 1: The agent is carcinogenic to humans. There is sufficient evidence that a causal relationship existed between exposure to the agent and human cancer.

Group 2B: The agent is possible carcinogenic to humans. Generally includes agents for which there is limited evidence in the absence of sufficient evidence in experimental animals.
Medical Conditions Aggravated By Exposure to the Product
Asthma, chronic lung disease, skin rashes and Parkinson’s disease.

FLASH POINT: None
METHOD USED: Not applicable
FLAMMABLE LIMITS: LFL: Not applicable, UFL: Not applicable

EXTINGUISHING MEDIA: Smother burning magnesium by covering with an extinguishing powder approved for use on magnesium fires such as G1, MET-L-X, etc. Consult National Fire Protection Association standards for other extinguishing media may be applicable to certain operations such as foundries or heat-treat furnaces.

FIRE & EXPLOSION HAZARDS: When heated in air to a temperature near its melting point, magnesium ignites and burns with a white flame. Use of water on burning magnesium will produce hydrogen gas and may cause an explosion.

FIRE-FIGHTING EQUIPMENT: Wear positive pressure self-contained breathing apparatus.

<table>
<thead>
<tr>
<th>IV - First Aid Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First Aid: Eyes</strong></td>
</tr>
<tr>
<td>Flush eyes with plenty of water or saline for at least 15 minutes. Consult a physician.</td>
</tr>
<tr>
<td><strong>First Aid: Skin</strong></td>
</tr>
<tr>
<td>Wash skin with soap and water for at least 15 minutes. Consult a physician if irritation persists.</td>
</tr>
<tr>
<td><strong>First Aid: Inhalation</strong></td>
</tr>
<tr>
<td>Remove to fresh air. If unconscious or severely injured, check for clean airway, breathing and presence of pulse. Perform CPR if there is no pulse or respiration. Consult a physician.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V - Fire Fighting Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Auto Ignition:</strong> 1202 F (650 C)</td>
</tr>
</tbody>
</table>

Flammable Properties
This product does not present fire or explosion hazards as shipped. Large pieces can ignite but must be heated to a temperature near the melting point (1200 F/650 C). Thin sheet, chips and shavings can be ignited at temperatures near 950 F (510 C). Finely divided powders can be ignited at temperatures below 900 F (482 C).

Fire/Explosion
May be a potential hazard under the following conditions:
- Dust or fines dispersed in the air can be explosive. Even a minor dust cloud can explode violently.
- Molten metal in contact with water/moisture. Moisture entrapped by molten metal can be explosive. Contact with water can generate hydrogen gas. Hydrogen gas could present an explosion hazard in confined or poorly ventilated spaces.

Extinguishing Media
Smother fires with salt flux. Manual application of water should be done with care to avoid contact with burning or molten metal. DO NOT USE: Foam. Halogenated agents. Carbon Dioxide.

Fire Fighting Equipment/Instructions
Fire fighters should wear NIOSH approved, positive pressure, self-contained breathing apparatus and full protective clothing when appropriate. Direct viewing of magnesium fires may result in eye injury.
STABILITY: (CONDITIONS TO AVOID) Stable under normal conditions. See incompatibility statement.

INCOMPATIBILITY: (SPECIFIC MATERIALS TO AVOID) Acid, water. It reacts with acid to form hydrogen gas. In finely divided form, it will react with water and acids to release hydrogen.

HAZARDOUS DECOMPOSITION PRODUCTS: None under normal use or storage. See incompatibility statement and fire and explosion hazard data, Section 3, for special situations.

HAZARDOUS POLYMERIZATION: Will not occur.

VI - Accidental release measures
Small/Large Spill
If molten: Contain the flow using dry sand or salt flux as a dam. Do not use shovels or hand tools to halt the flow of molten metal. Allow the spill to cool before re-melting as scrap.

VII - Handling and Storage
Handling/Storage
Product should be kept dry. Avoid contact with sharp edges or heated metal.

Requirements for Processes Which Generate Dusts or Fumes
Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off the water. Water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops of water can lead to violent explosions.
During melting operations, the following minimum guidelines should be observed:

- Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment or storage.
- Store materials in dry, heated areas with any cracks or cavities pointed downwards.
- Preheat and dry large or heavy items such as ingot adequately before charging into a furnace containing molten metal. This is typically done by use of a drying oven or homogenizing furnace. The drying cycle should bring the internal metal temperature of the coldest item of the batch to 400 F and then hold at that temperature for 6 hours.

VIII - Exposure Controls/Personal Protection
Engineering Controls
Use with adequate explosion-proof ventilation to meet the limits listed in Section 8.

Personal Protective Equipment
Respiratory Protection - Use NIOSH-approved respiratory protection as specified by an Industrial Hygienist or other qualified professional if concentrations exceed the limits listed in Section 8. Suggested respiratory protection: N95, N100 for lead or supplied air for beryllium.
Eye Protection - Wear safety glasses/goggles to avoid eye contact.
Skin Protection - Wear appropriate gloves to avoid any skin injury.
**General** - Wear appropriate fire-resistant clothing (e.g., gloves, coveralls) when exposing magnesium chips and turnings to elevated temperatures (950 F/510 C), which cause ignition.

**Exposure Guidelines**

**A: General Product Information**

The ACGIH has proposed a new Threshold Limit Value for Beryllium of 0.2 ug/m3 TWA. The U.S. Department of Energy has proposed an Action Level for Beryllium of 0.5 ug/m3 TWA.

**B: Component Exposure Limits**

**Aluminum (7429-90-5)**

ACGIH metal dust, as Al: 19 mg/m3 TWA
OSHA total dust, as Al: 15 mg/m3 TWA; respirable fraction, as Al: 5 mg/m3 TWA

**Silicon (7440-21-3)**

ACGIH 10 mg/m3 TWA
OSHA total dust: 15 mg/m3 TWA; respirable fraction: 5 mg/m3 TWA

**Manganese (7439-96-5)**

ACGIH as Mn, 0.2 mg/m3 TWA
OSHA compounds, as Mn: C 5 mg/m3; fume, as Mn: C 5 mg/m3
OSHA compounds, as Mn: C 5 mg/m3; fume, as Mn: C 5 mg/m3

**C: Additional Compounds Which May be Formed During Processing**

**Magnesium oxide (1309-48-4)**

ACGIH 10 mg/m3 TWA
OSHA total particulate: 15 mg/m3 TWA

**Alumina (non-fibrous) (1344-28-1)**

ACGIH as Al: 10 mg/m3 TWA (The value is for total dust containing no asbestos and < 1% crystalline silica)
OSHA total dust: 15 mg/m3 TWA; respirable fraction: 5 mg/m3 TWA

**Zinc oxide (1314-13-2)**

ACGIH fume: 5 mg/m3 TWA; dust: 10 mg/m3 TWA (The value for Zinc oxide ‘dust’ is total dust containing no asbestos and < 1% crystalline silica)
ACGIH fume: 10 mg/m3 STEL
OSHA fume: 5 mg/m3 TWA; total dust: 15 mg/m3 TWA; respirable fraction: 5 mg/m3 TWA

**Silica fume (amorphous) (69012-64-2)**

ACGIH 2 mg/m3 TWA (This value is for the respirable fraction of the silica dust)

**IX - Physical & Chemical Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State</td>
<td>Solid metal</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>2030 F (1110 C)</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Solubility Water</td>
<td>None Specific</td>
</tr>
<tr>
<td>Density</td>
<td>1.75 g/cm (0.063 lb/in)</td>
</tr>
<tr>
<td>Odor</td>
<td>None</td>
</tr>
<tr>
<td>Octanol-Water Coefficient</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

**Appearance:** Silvery-white

**Melting Point:** 1202 F (650 C)

**Vapor Density:** Not applicable

**Gravity:** See Density

**pH Level:** Not applicable

**Odor Threshold:** Not applicable
X – Chemical Stability & Reactivity Information

Stability
Stable under normal conditions of use, storage and transportation as shipped.

Conditions to Avoid
Chips, fines, dust and molten metal are considerably more reactive with the followings:

- Water: Slowly generates flammable/explosive hydrogen gas and heat. Generation rate is greatly increased with smaller particles (e.g., fines and dusts). Molten metal can react violently/explosively with water or moisture, particularly when water is entrapped.
- Heat: Oxidizes at a rate dependent upon temperature and particle size. Supports ignition above 950 F (510 C) and burns extremely vigorously with white, hot flame.
- Strong Oxidizers: Violent reaction with considerable heat generation.
- Acids and alkalis: Reacts to generate flammable/explosive hydrogen gas. Generation rate is greatly increased with smaller particles (e.g., fines and dusts).
- Halogenated compounds: Reacts with chlorine and iodine.

XI - Toxicological Information

Health Effects of Ingredients
A: General Product information
No information available for product.

B: Component Analysis – LD50/LC50
Silicon (7440-21-3) Oral LD50 Rat: 3160 mg/kg
Manganese (7439-96-5) Oral LD50 Rat: 9 gm/kg

Carcinogenicity
A: General Product Information
No information available for product.

XII - Ecological Information

Ecotoxicity
A: General Product Information - No information available for product.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity - No ecotoxicity data was found for this product’s components.

Environmental Fate - No information available for product.

XIII - Disposal Considerations

Disposal Instructions
Reuse or recycle material whenever possible.

US EPA Waste Number & Descriptions
A: General Product Information
RCRA Status: Not federally regulated in the U.S. Otherwise, characterize in accordance with applicable regulations (40 CFR 261 or state equivalent in the U.S.)

B: Component Waste Numbers
RCRA waste codes other than described under Section A may apply depending on use of product. Refer to 40 CFR 261 or state equivalents in the U.S.
XIV - Transportation Information

Special Transportation:

<table>
<thead>
<tr>
<th>Footnotes:</th>
<th>PSN #1</th>
<th>PSN #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>US DOT Shipping</td>
<td>Not Regulated</td>
<td>Magnesium alloys</td>
</tr>
<tr>
<td>Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard Class:</td>
<td>n/a</td>
<td>4.1</td>
</tr>
<tr>
<td>UN NA Number:</td>
<td>n/a</td>
<td>UN 1869</td>
</tr>
<tr>
<td>Packing Group:</td>
<td>III</td>
<td>III</td>
</tr>
<tr>
<td>RQ:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – Tech Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – Marine Pollutant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
(1) When “Not regulated”, enter the proper freight classification, MSDS Number”, and “Product Name” on the shipping paperwork.
(2) Regulated when containing more than 50 percent magnesium in pellets, turnings or ribbons.

Canadian TDG Hazard Class & PIN: #1 Not regulated; #2 4.1, UN 1869

XV - Regulatory Information

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

WHMIS classification is as:

B4 Flammable Solid *①
Transportation of Dangerous Goods: class 4.1

B6 Reactive Flammable Material *②
emits a flammable gas on contact with water vapour: hydrogen

Disclosure at 1.0 % according to classification criteria.

US Federal Regulations

A: General Product Information
All electrical equipment must be suitable for use in hazardous atmospheres involving aluminum powder in accordance with 29 CFR 1910.307. The National Electrical Code, NFPA 70, contains guidelines for determining the type and design of equipment and installation which will meet this requirement.

B: Component Analysis
This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Aluminum (7429-90-5)
SARA 313: form R reporting required for 1.0% de minimis concentration (fume or dust only).

Yttrium (7440-65-5)
SARA 311/312: form R reporting required for 1.0% de minimis concentration.

Neodymium (7440-00-8)
SARA 311/312: form R reporting required for 1.0% de minimis concentration.

Zinc (7440-66-6)
SARA 313: form R reporting required for 1.0% de minimis concentration (only fume or dust).
CERCLA: final RQ = 1000 pounds (4.54 kg) (no reporting of releases of this hazardous substance is required if the diameter of the solid metal released is equal to or exceeds 0.004 inches).

Manganese (7439-96-5)
SARA 313: form R reporting required for 1.0% de minimis concentration.

Sara 311/312 Physical and Health Categories:
Immediate (acute) Health Hazard: Yes, if particulates/fumes generated during processing.
Delayed (chronic) Health Hazard: Yes, if particulates/fumes generated during processing.
Fire Hazard: No
Sudden Release of Pressure: No
Reactive: Yes, if molten

State Regulations

A: General Product Information
PENNSYLVANIA “Special Hazardous Substance”: Beryllium
Chemical(s) known to the State of California to cause cancer: Beryllium, Lead
Chemical(s) known to the State of California to cause reproductive/developmental effects: Lead

B: Component Analysis – State
The following components appear on one or more of the following state hazardous substances lists:

<table>
<thead>
<tr>
<th>Component CAS#</th>
<th>CA</th>
<th>FL</th>
<th>MA</th>
<th>MN</th>
<th>NJ</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium 7439-95-4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Aluminum 7429-90-5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zinc 7440-66-6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Silicon 7440-21-3</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Manganese 7439-96-5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zirconium 7440-67-7</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Neodymium 7440-00-8</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yttrium 7440-65-5</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Copper 7440-50-8</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer.
WARNING! This product contains a chemical known to the state of California to cause reproductive/developmental effects.

Other Regulations

General Product Information
In reference to Title VI of the Clean Air Act of 1990, this material does not contain nor was it manufactured using ozone-depleting chemicals.
Disclaimer

Metalmart International Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. METALMART INTERNATIONAL INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERENCES. ACCORDINGLY, METALMART INTERNATIONAL INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.